Что входит в состав клеточной стенки. Строение и функции клеточной стенки

Клеточная стенка (нередко в качестве синонима термина "клеточная стенка" в учебной и научной литературе используется термин "клеточная оболочка".) у растений - это структурное образование, располагающееся по периферии клетки, за пределами плазмалеммы , придающее клетке прочность, сохраняющее ее форму и защищающее протопласт .

Клеточная стенка растений противостоит высокому осмотическому давлению большой центральной вакуоли и препятствует разрыву клетки. Кроме того, совокупность прочных клеточных стенок выполняет роль своеобразного внешнего скелета, поддерживающего форму растения и придающего ему механическую прочность. Клеточная стенка, обладая большой прочностью, в то же время способна к росту, и прежде всего к росту растяжением. Эти два в известной степени противоположных требования удовлетворяются за счет особенностей ее строения и химического состава.

Клеточная стенка, как правило, прозрачна и хорошо пропускает солнечный свет. Через нее легко проникают вода и низкомолекулярные вещества, но для высокомолекулярных веществ она полностью или частично непроницаема. У многоклеточных организмов стенки соседних клеток скреплены между собой пектиновыми веществами, образующими срединную пластинку.

При специальной обработке растительных тканей некоторыми веществами (крепкие щелочи, азотная кислота) стенки соседних клеток разъединяются в результате разрушения срединной пластинки. Этот процесс называется мацерацией . Естественная мацерация происходит у перезрелых плодов груши, дыни, персика и др.

В результате тургорного давления стенки соседних клеток в углах могут округляться и между ними образуются межклетники.

Стенка клетки представляет собой продукт жизнедеятельности ее протопласта . Поэтому стенка может расти, только находясь в контакте с протопластом. Однако при отмирании протопласта стенка сохраняется и мертвая клетка может продолжать выполнять функции проведения воды или играть роль механической опоры.

Основу клеточной стенки составляют высокополимерные углеводы: молекулы целлюлозы (клетчатки) , собранные в сложные пучки - фибриллы, образующие каркас, погруженный в основу (матрикс), состоящий из гемицеллюлоз , пектинов и гликопротеидов ( рис. 21). Молекулы целлюлозы состоят из большого числа линейно расположенных мономеров - остатков глюкозы . Целлюлоза очень стойка, не растворяется в разбавленных кислотах и даже в концентрированных щелочах. Эластичный целлюлозный скелет придает клеточной оболочке механическую прочность. Первоначально число микрофибрилл, образованных молекулами целлюлозы, в клеточной стенке относительно невелико, но с возрастом оно увеличивается и клетка теряет способность к растяжению.

Гемицеллюлозы отличаются от целлюлозы составом мономеров и разветвленным их расположением в молекулах. Являясь одним из компонентов пластичного матрикса, гемицеллюлозы придают клеточной стенке дополнительную прочность, но почти не препятствуют ее росту. Гемицеллюлозы могут быть и запасными веществами, так как легко гидролизуются. Кроме гемицеллюлоз в матрикс, а также в срединную пластинку входят пектиновые вещества, или пектины , и полисахариды , образованные мономерами - уроновыми кислотами . Эти вещества скрепляют, склеивают оболочки соседних клеток. Молекулы гемицеллюлоз, пектина и гликопротеидов соединяют целлюлозные микрофибриллы.

Помимо полисахаридов , в матриксе стенок многих клеток часто обнаруживаются неуглеводные компоненты. Наиболее обычен из них лигнин - полимерное вещество полифенольной природы. Содержание его в стенках некоторых видов клеток может достигать 30%.

Клеточной стенкой обладают не только растения, но и грибы, а также многие прокариоты. Само открытие Робертом Гуком клетки связано именно с этой структурой. Для понимания устройства клеточной стенки полезно рассмотреть механизм ее образования. Начнем с самых ранних стадий. Как известно, цитокинез (процесс разделения клеток по завершении митоза) в клетках животных осуществляется посредством их отшнуровки, у растений это происходит совершенно иначе. Сначала в экваториальной плоскости делящейся клетки из микротрубочек образуется цилиндрической формы структура, которая называется фрагмопластом . Затем вдоль этих микротрубочек транспортируются мембранные пузырьки, которые отшнуровываются от мешочков комплексом Гольджи. Эти пузырьки сливаются, образуя окруженный мембраной диск. Такой диск является ранней клеточной пластинкой , с ней постоянно сливаются все новые пузырьки. В итоге ранняя клеточная пластинка достигает плазматической мембраны и сливается с ней, разделяя дочерние клетки. Следует отметить, что раннюю клеточную пластинку пронизывают элементы эндоплазматической сети, поэтому такое разделение дочерних клеток не является абсолютным. Прямые сообщения между растительными клетками называются плазмодесмами . Они специфичны для растительных клеток и будут более подробно рассмотрены ниже. Пузырьки комплекса Гольджи, из которого образовалась ранняя клеточная стенка, содержат различные полисахариды, основные из которых пектины и гемицеллюлоза. Связываясь между собой, эти вещества образуют срединную пластинку , которая в основном состоит из пектина. Позже в ее состав входят более плотные вещества - целлюлоза и лигнин. Как уже упоминалось, формирование срединной пластинки зависит от оси веретена деления, если учитывать, что ткани развиваются в трехмерном пространстве, легко представить, что каждая клетка со всех сторон окружена срединной пластинкой.

Рис. Ход цитокинеза в клетках высших растений, имеющих жесткую клеточную структуру

(по Б. Албертсу и соавт., с изменениями и дополнениями)

Рис. Расположение фрагмопласта (Phragmoplast ) в делящейся растительной клетке

На следующих этапах формируются сначала первичная , а затем вторичная клеточная стенка . Строение этих структур нетрудно представить себе, если вспомнить принцип устройства железобетонных блоков, в которых присутствуют металлический каркас и связующее вещество в виде цемента. Такая конструкция обладает немалой прочностью. Такой же принцип наблюдается и в клеточных стенках растений (как в первичных, так и во вторичных). При этом роль нерастяжимых элементов каркаса выполняют пучки молекул целлюлозы, а роль связующего компонента принадлежит гемицеллюлозам и пектинам, которые образуют матрикс клеточной стенки. Все эти вещества транспортируются в пузырьках комплекса Гольджи к плазматической мембране, где пузырьки сливаются с ней и посредством экзоцитоза выбрасывают содержащиеся в ней вещества наружу. Эти вещества, попадая в пространство между плазматической мембраной и срединной пластинкой, служат материалом для образования клеточной стенки.

Молекулы целлюлозы образованы большим количеством (более 500) остатков глюкозы, которые ковалентно соединяются между собой посредством гликозидных связей. Эти молекулы не ветвятся, но образуют по всей длине многочисленные водородные связи с расположенными рядом молекулами. В результате возникают фибриллы, состоящие из 60 - 70 молекул целлюлозы, длиной несколько мкм (см. рис.). С целлюлозными фибриллами связаны молекулы гемицеллюлоз. Этот полисахарид образован из остатков двух пентоз - ксилозы и арабинозы. Они формируют цепи, к которым присоединяются боковые ответвления, образованные другими моносахаридами. В свою очередь, с молекулами гемицеллюлозы взаимодействуют пектины - полисахариды, образованные сахароподобными мономерами (см. рис.). Их отличительной особенностью является наличие большого количества карбоксильных групп (так называются атомные группы - COOH). Эти группы легко взаимодействуют с ионами кальция и магния, образуя гелеобразные соли - пектаты (это свойство активно используется в хозяйственной практике человека при производстве мармеладов и желе; особенно богаты пектинами некоторые виды водорослей, которые добываются для этих целей в больших количествах). Эта реакция обратима и зависит от различных физических условий - влажность, температура, а также наличие ионов .

Рис. Электронная микрофотография, на которой видны целлюлозные волокна в отдельных слоях клеточной стенки зеленой морской водоросли - Chaetomorpha melagonium .

Толщина целлюлозных микрофибрилл составляет 20 нм (по Н. Грину и соавт., с изменениями)

Рис. Схема строения клеточной оболочки (из Wiki)

Middle Lamella - срединная пластинка, Primary Cell Wall - первичная клеточная стенка, Plasma Membrane - цитоплазматическая мембрана, Pectin - молекулы пектина, Cellulose Microfibril - целлюлозные микрофибриллы, Hemicellulose - молекулы гемицеллюлозы, Soluble Protein - растворимый белок

Целлюлоза, гемицеллюлоза и пектины очень важные компоненты пищи человека. Это балластные вещества, или пищевые волокна, которые не перевариваются в кишечнике человека. Они связывают воду, набухают, стимулируют кишечную перистальтику, способствуют выведению из организма токсических веществ.

Рис. Схема возможного соединения двух главных компонентов первичной клеточной стенки - целлюлозных микрофибрилл и матрикса.

Молекулы гемицеллюлоз (например, ксилоглюканов) прикреплены к поверхности целлюлозных микрофибрилл водородными связями. Некоторые из этих молекул соединены поперечными сшивками, образованными короткими молекулами нейтральных пектинов (например, арабиногалактанов) и кислых пектинов (например, рамногалактуронанов). Гликопротеины плотно вплетены в ткань клеточной стенки

(по Б. Апьбертсу и соавт., с изменениями и дополнениями)

Первичная клеточная стенка содержит до 90% воды. Она характерна главным образом для меристематических (меристематические клетки - это клетки, способные постоянно делиться) и малодифференцированных (дифференциация - приобретение клеткой морфологических особенностей, связанных с функциональной специализацией клетки) клеток. Такие клетки способны значительно увеличивать свой объем и, соответственно, размеры. Необходимо учитывать, что целлюлозные фибриллы нерастяжимы, а увеличение линейных размеров осуществляется за счет смещения относительно друг друга упомянутых фибрилл.

Некоторые клетки, в частности мезофилла листьев (мезофилл - фотосинтезирующая паренхима вегетативных листьев), по достижении своих окончательных размеров перестают откладывать элементы оболочки. И у них в течение всей жизни сохраняется первичная оболочка. Но у большинства клеток этот процесс не прекращается. В этом случае между плазматической мембраной и первичной стенкой откладывается вторичная. Ее строение в принципе сходно с первичной стенкой, но соотношение компонентов различно. Вторичная стенка содержит значительно больше целлюлозы и меньше воды.

Во вторичной стенке обычно выделяют три слоя - наружный, самый мощный средний и внутренний (см. рис.). В ней (во вторичной стенке) имеется большое количество пор. Следует отметить, что, несмотря на название, пора представляет собой отнюдь не сквозное отверстие, а всего лишь обычное углубление во вторичной стенке. Первичная стенка и срединная пластинка остаются при этом интактными. Несмотря на это, через поры эффективно осуществляется транспорт, а у некоторых растений (например, у голосеменных) транспорт воды по ксилеме осуществляется только через поры. Поры могут быть простыми (см. рис.) и окаймленными (см. рис.). Окаймленные поры хвойных благодаря наличию такой структуры, как торус, способны активно влиять на интенсивность транспорта. Торус, смещаясь, может перекрывать поток воды (который в нормальном положении обтекает его по краям). Правда, такая акция может быть только одноразовой, потому что, сместившись, торус уже не способен больше вернуться в первоначальное положение.

Рис. Схема строения клеточной стенки:

А - общий вид; Б – часть оболочки при большом увеличении; В - вид сверху; 1 - срединная пластинка; 2, 3, 4- соответственно внешний, средний и внутренний слои вторичной оболочки; 5 - пора; 6 - слепая пора; 7 – плазмодесменные канальцы; 8 - поровое поле

(по В. А. Гуляеву)

Рис. Простые поры в оболочках каменистых клеток из семенной кожуры грецкого ореха:

1 - вторичная оболочка состоит из многих параллельных слоев, отложенных путем аппозиции; 2 - полость клетки; 3 - поровый канал; 4 - ветвистая пора; 5 - срединная пластинка, слившаяся с первичной оболочкой (по Каусману)

Рис. Схема строения пары окаймленных пор:

А - открытое положение поровой мембраны: 1 - первичные оболочки двух соседних клеток (и межклеточный слой между ними); 2 – вторичная оболочка; 3 - поровое окаймление; 4 - поровая мембрана (состоящая из двух первичных оболочек соседних клеток и межклеточного слоя между ними); 5 - поровая камера; 6 - торус; Б - закрытое положение поровой мембраны (по А. А. Яценко-Хмелевскому)

Транспорт также осуществляется через мелкие (до 30 - 60 нм) сквозные отверстия, которые ведут в каналы, пронизывающие клеточные стенки соседних клеток вместе с серединной пластинкой, - плазмодесмы . Эти каналы по всей длине выстланы плазматической мембраной. Через плазмодесмы проходит полая десмотубула , через нее элементы эндоплазматического ретикулума соседних клеток сообщаются между собой (см. рис.). Между плазматической мембраной и десмотубулой всегда имеется небольшое количество гиалоплазмы . Формирование плазмодесм обычно происходит в момент деления клеток в стадии цитокинеза, но современные исследования показывают, что такие межклеточные сообщения могут образовываться и после разделения сестринских клеток, кроме того, они имеются и между несестринскими клетками. Плазмодесмы позволяют веществам свободно мигрировать из одной клетки в другую, минуя при этом серьезные барьеры. Полагают, что ситовидные поля клеток флоэмы (флоэма - тип проводящей ткани, по которой синтезированные органические вещества транспортируются от фотосинтезирующих органов по направлению к корню) так же представляют собой крупные плазмодесмы.

Рис. Строение плазмодесмы

Рис. Плазмодесмы. Участок оболочек трех смежных клеток при средних увеличениях электронного микроскопа (схематизировано):

1 - эндоплазматический ретикулум смежных клеток сообщается между собой через десмотубулы (каналы плазмодесм); 2 - плазмалемма выстилает

каналы, отграничивая цитоплазму от оболочки; 3 – элементы эндоплазматического ретикулума; 4 - срединная пластинка; 5 – первичная оболочка; 6 - гиалоплазма (по И. А. Корчагиной)

При формировании вторичной клеточной стенки линейный роет клеток становится невозможен, поэтому этот процесс всегда сопровождается уменьшением объема протопласта (протопласт - содержимое живой клетки, за исключением клеточной оболочки). В некоторых случаях клетки, имеющие вторичные утолщения оболочек, сохраняют живой функционирующий протопласт (к примеру, клетки колленхимы - механической ткани, хотя здесь оболочка утолщается не везде, а лишь в определенных участках), но очень часто утолщение приводит к серьезному нарушению транспорта веществ, в результате чего протопласт отмирает, а главную функцию выполняет мощная оболочка (например, склеренхима). В этом случае оболочки одревесневают, т.е. пропитываются лигнином (лат. lignum - древесина). Одревеснение наблюдается у всех высших растений, за исключением мохообразных.

В результате повышается механическая прочность и понижается водопроницаемость.

Лигнин не является углеводом, а происходит из ароматических спиртов. Во вторичной оболочке его содержание доходит до 25 - 30% .

Кроме лигнина, в оболочке клеток некоторых неспециализированных тканей могут накапливаться вещества, обладающие гидрофобными свойствами: растительные воска, кутин и суберин (лат. suber - пробка). Суберин откладывается на внутренней поверхности стенок клеток пробки, что вызывает нарушение проницаемости и гибель клеток. Из суберина образуются и пояски Каспари клеток эндодермы (эндодерма - самый внутренний слой первичной коры, эндодерму стебля также называют крахмалоносным влагалищем из-за отложений крахмала) корня. Кутин выделяется эпидермальными клетками, где он вместе с растительными воска-ми образует защитную кутикулу.

Итак, каждая растительная клетка заключена в сложно устроенный деревянный футляр. Но что это дает клетке? Клеточная стенка выполняет множество функций, но наиболее важными представляются две - роль наружного скелета и обеспечение возможности тургора (лат. turgescere - набухать).

Наличие оболочки лишает клетку возможности изменять свою форму. Для животных клеток это не приемлемо, т.к. резко ограничивает подвижность. Однако растительные организмы являются автотрофами и поэтому в значительно меньшей степени нуждаются в перемещении своего тела в пространстве. Напротив, жесткая оболочка фиксирует клетку. Особенно четко роль клеточной стенки прослеживается у высших наземных растений.

Наземные формы растений должны как-то поддержать тело над землей. Воздух, по причине малой плотности, не может поддерживать растение, поэтому наличие жесткой клеточной стенки, в особенности мощной вторичной, пришлось как нельзя кстати. Но клетка не может без ограничения увеличивать толщину стенки, сохраняя при этом живой протопласт, т.к. нарушается транспорт веществ. И действительно, значительная часть клеток живого растения мертва, а функционируют у них именно толстые оболочки (ксилема - тип проводящей ткани, по которой осуществляется транспорт воды с растворенными в ней минеральными веществами по направлению от корня ко всем структурам побега, склеренхима - тип механической ткани, образованной исключительно толстостенными мертвыми клетками).

Живая растительная клетка характеризуется тургором - давлением, которое оказывает протопласт на клеточную стенку, и, если бы ее не было, клетка разорвалась бы. Тургор выполняет функцию опоры у живых клеток, стенки которых не имеют сильно выраженного вторичного утолщения. Это особенно характерно для травянистых растений.

Кроме того, в клеточных стенках могут запасаться питательные вещества.

Клеточные стенки разделяют организм растения на два пространства. То из них, которое объединяет между собой все протопласты, связанные между собой посредством плазмодесм, называется симпластом . Пространство, которое отграничено клеточными стенками и включает в себя межклетники, называется апопластом . Соответственно транспорт через плазмодесмы называется симпластическим, а транспорт по оболочкам и межклетникам - апопластическим


Клеточная стенка растений выполняет ряд важных функций. Окружая растительную клетку со всех сторон, она служит связующим звеном между ней и соседними клетками. Соединяясь между собой тонкими нитями цитоплазмы – плазмодесмами, через которые осуществляется перемещение веществ из клетки в клетку.

Благодаря тому, что первичная оболочка эластична, клетка в этот период интенсивно растет. После прекращения роста образуется вторичная оболочка, в состав которой входит лигнин и ряд других веществ - придающий клетке прочность, жесткость. Эти свойства особенно важны для наземных растений: во-первых, это прочный «скелет», во-вторых, защита от избыточной потери воды. Клеточная оболочка прозрачна, поэтому солнечные лучи легко проникают внутрь клетки к хлоропластам.

Цитоскелет представляет собой белковые, неветвящиеся полимеры, участвующие в процессе перемещения клеточных компонентов, а также выполняют каркасную скелетную роль. Также эти компоненты участвуют в процессе деления клетки, формируя нити веретена деления.

Одревеснение, опробковение и кутинизация клеточных оболочек

Сильному метаморфозу состава и структуры подвергается оболочка при одревеснении, опробковении и кутинизации. Одревеснение состоит в том, что часть целлюлозной толщи стенки пропитывается лигнином. Ароматическое вещество лигнин является основным инкрустирующим веществом клеточной стенки. Это полимер с неразветвленной молекулой, состоящей из ароматических компонентов. Мономерами лигнина могут быть конифериловый, синаповый и другие спирты.

Интенсивная лигнификация клеточных стенок начинается после прекращения роста клетки. Отношение между целлюлозой и лигнином в одревесневших слоях оболочки было признано аналогичным конструкции железобетонных сооружений. Лигнин, подобно бетонной массе, заполняет промежутки ячеек сетки; при этом арматура и заполнение образуют монолитное целое. Одревеснение понижает пластичность клеточных стенок, закрепляет их форму. Однако клетки с одревесневшими стенками могут оставаться живыми десятки лет. Лигнин обладает и консервирующими свойствами и поэтому действуют как антисептик, придавая тканям повышенную стойкость по отношению к разрушительному действию грибов и бактерий.

Весьма распространено в растительном мире наличие в толще клеточных оболочек, либо на поверхности веществ, называемых кутинами, суберинами и спорополленинами.

Суберины. Клеточные оболочки, содержащие суберины, называют опробковевшими. Суберин отлагается внутри клеточной оболочки и поэтому относится к инкрустирующим веществам. Обычно суберин составляет пластинку, находящуюся в так называемом вторичном слое клеточной стенки.

Кутины – это адкрустирующие гидрофобные вещества, покрывающие поверхность эпидермальных клеток растений в виде пленки – кутикулы.

Спорополленины имеются в наружных оболочках спор, в том числе пыльцевых зерен голосеменных и покрытосеменных растений.

Общими для них являются следующие черты.

Все они высокополимерные вещества, обязательным компонентом которых являются насыщенные и ненасыщенные жирные кислоты и жиры.

От жиров, встречающихся в полости клетки, в протопласте, они отличаются нерастворимостью в ряде реактивов.

Эти вещества стойки даже по отношению к концентрированной серной кислоте.

Суберины, кутины и спорополленины почти непроницаемы для воды, воздуха. Эти вещества находятся в оболочках периферических тканей и защищают органы растений от излишней потери воды.

Ослизнение и минерализация клеточных оболочек

При ослизнении клеточных оболочек образуются слизи и камеди. Те и другие представляют собой высокомолекулярные углеводы, состоящие большей частью из пентоз и их производных. Они нерастворимы в спирте, эфире, а в воде сильно набухают.

Резкой границы между ними не установлено. Обычно их различают по консистенции в набухшем состоянии: камеди клейки и могут вытягиваться в нити, слизи же сильно расплываются и в нити не тянутся. В сухом состоянии камеди и слизи очень тверды и хрупки, и лишь при смачивании водой переходят в тягучее желеобразное состояние.

Значение ослизнения клеточных стенок во многих случаях очевидно. Например, ослизненные наружные слои клеток кожицы семян, набухая весной, входят в соприкосновение с почвой.

Слизь, благодаря клейкости, закрепляет семена на влажном месте и, поглощая воду из почвы, улучшает водный режим проростка, передавая ему воду и защищая от высыхания. Также слизь может использоваться как запасное, питательное вещество.

В более поздней стадии развития оболочки содержат минеральные вещества, причем в некоторых случаях в весьма значительных количествах. Эти вещества могут отлагаться и в толще оболочки и на ее внутренней и наружной поверхности, или же в особых выростах клеточных стенок.

По структуре эти отложения могут быть аморфными и кристаллическими.

Наиболее распространены отложения кремнезема и солей извести. Кальций встречается в клеточных оболочках в виде углекислой, щавелевокислой и пектиновокислой извести.

Широко распространено наличие кальция в срединной пластинке клеточных стенок.

Формирование и рост клеточной стенки

Новая оболочка формируется в процессе деления клетки в заключительной стадии митоза – телофазе. После расхождения хромосом в экваториальной плоскости клеток появляется скопление мелких мембранных пузырьков, которые в центральной части клеток начинают сливаться друг с другом. Этот процесс слияния мелких вакуолей происходит от центра клетки к периферии и продолжается до тех пор, пока мембранные пузырьки не сольются между собой и с плазматической мембраной боковой поверхности клетки. Так образуется клеточная пластинка, или фрагмопласт. В центральной части ее располагается аморфное вещество матрикса, которое наполняло сливающиеся пузырьки. Доказано, что эти первичные вакуоли происходят от мембран аппарата Гольджи. В состав первичной клеточной стенки входит также небольшой количество белка (около 10%), богатого гидроксипролином и имеющего множество коротких олигосахаридных цепей, что определяет этот белок как гликопротеид.

После образования срединной пластинки протопласт соседних клеток откладывает на нее первичную оболочку. Слой целлюлозы, который откладывается во время роста клетки, называется первичной клеточной оболочкой. Помимо целлюлозы, гемицеллюлозы и пектина, первичные оболочки содержат также и структурный белок – гликопротеин. Первичные оболочки могут и лигнифицироваться, хотя, как правило, лигнин им не свойственен. Однако наиболее характерную часть первичной оболочки составляет пектиновый компонент. Он придает оболочке пластичность, позволяет ей растягиваться, по мере удлинения органов: корня, стебля, листа. Пектиновые вещества способны сильно набухать, поэтому первичные оболочки содержат много воды (60-90%). На долю гемицеллюлоз и пектиновых веществ, приходится 50-60% сухого веса первичной оболочки, содержание целлюлозы не превышает 30%, структурный белок занимает до 10%. Продолжающийся процесс выделения веществ матрикса осуществляется за счет подхода к плазматической мембране пузырьков аппарата Гольджи, слияния их с мембраной и высвобождение их содержимого за пределы цитоплазмы. Здесь же, вне клетки, на ее плазматической мембране идет синтез и полимеризация целлюлозных фибрилл. Так постепенно образуется вторичная клеточная оболочка. С достаточной точностью определить и суметь отличить первичную оболочку от вторичной трудно, так как они соединены между собой несколькими промежуточными слоями.

Основную массу закончившей свое формирование клеточной стенки составляет вторичная оболочка. Она придает клетке ее окончательную форму. После разделения клетки на две дочерние происходит рост новых клеток, увеличение их объема и изменение формы; клетки часто вытягиваются в длину. Одновременно с этим идут наращивание толщины клеточной оболочки и перестройка ее внутренней структуры.

В период растяжения фибриллы начинают размещаться под прямым углом друг к другу и в конечном счете оказываются вытянутыми более или менее параллельно продольной оси клетки. Постоянно идет процесс: в старых слоях (ближе к центру оболочки) фибриллы подвергаются пассивным сдвигам, а отложение новых фибрилл во внутренних слоях (ближайших к мембранам клетки) продолжается в соответствии с исходным планом конструкции оболочки. Этот процесс создает возможность скольжения фибрилл относительно друг друга, а перестройка арматуры клеточной оболочки возможна из-за студенистого состояния компонентов ее матрикса. В дальнейшем при замещении в матриксе гемицеллюлозы на лигнин подвижность фибрилл резко снижается, оболочка становится плотной, происходит одревеснение. Содержание различных веществ примерно таково: воды очень мало, целлюлозы 40-50%, лигнина 25-30%, гемицеллюлозы 20-30% и практически нет пектиновых веществ.

Вторичная оболочка не всегда располагается равномерно. У некоторых специализированных водопроводящих клеток она имеет вид колец или спиральных лент. Такие клетки сохраняют способность к продольному растяжению,и после отмирания.

Часто под вторичной оболочкой обнаруживают третичную оболочку, которую можно рассматривать как засохший остаток дегенерировавшего слоя собственно цитоплазмы.

Функции клеточной стенки

Являясь продуктом метаболической деятельности протопласта клеточная стенка выполняет ряд функций:

Она защищает клеточное содержимое от повреждений и инфекций (Защитная функция);

Клеточная стенка поддерживает форму и определяет размер клетки;

Стенка играет скелетную (опорную) роль, которая особенно возрастает у наземных растений;

Она имеет большое значение в росте и дифференцировании клетки;

Стенка участвует в ионном обмене и поглощении клеткой веществ;

Единый апопласт способствует перемещению веществ из клетки в клетку внеклеточным путем (проводящая функция);

Структура клеточных стенок предохраняет клетки от избыточной потери воды (покровная функция).

Эволюция клеточной стенки

Примитивные клетки были окружены слизистым чехлом, состоящим из пектиновых веществ, как и фрагмопласт, возникающий при митотическом делении в клетках современных растений. Совершенствование защитной функции клеточной оболочки привела к появлению в ее составе гемицеллюлозных компонентов. Форма клетки могла поддерживаться кремниевым и карбонатным наружным чехлом, сохранившимся у некоторых современных водорослей. По предположению Фрей-Висслинга первичный слизистый углеводный чехол мог быть предшественником матрикса клеточной стенки.

С возникновением автотрофного способа питания в оболочках клеток в качестве структурного компонента появилась целлюлоза. Выход растений на сушу поставил клеточную стенку перед необходимостью выполнять функцию опоры тела в воздухе. Именно целлюлоза оказалась наиболее оптимальным материалом (в меру прочным и в то же время эластичным) в динамичной и переменчивой среде, где подземным органам растений пришлось испытывать более сильные нагрузки.

Выход на сушу, и увеличение размеров растительных организмов привели также к необходимости снабжения клеток водой. Именно с развитием у наземных растений сосудов, проводящих воду, связывают появление в клеточных стенках лигнина. Лигнин не обнаружен у ископаемых океанских и современных водных растений.

Цитоскелет

Понятие о цитоскелете или скелетных компонентах цитоплазмы разных клеток было высказано Н.К.Кольцовым, выдающимся русским цитологом ещё в начале ХХ века. К сожалению, они были забыты, и только в конце 1950 годов с помощью электронного микроскопа эта скелетная система была переоткрыта.

Цитоскелетные компоненты представлены нитевидными, неветвящимися белковыми комплексами, или филаментами (тонкими нитями). Существуют три системы филаментов, различающихся по химическому составу, ультраструктуре и функциональным свойствам. Самые тонкие нити – это микрофиламенты. К другой группе нитчатых структур относятся микротрубочки, третья группа представлена промежуточными филаментами.

Все эти фибриллярные структуры могут участвовать в качестве составных частей в процессе физического перемещения клеточных компонентов или даже целых клеток, кроме того, в ряде случаев они выполняют сугубо каркасную скелетную роль. Элементы цитоскелета встречаются во всех без исключения эукариотических клетках. Степень выраженности их в разных клетках может быть различной.

Общим для элементов цитоскелета является то, что все они представляют собой белковые, неветвящиеся фибриллярные полимеры, нестабильные, способные к полимеризации и деполимеризации. Такая нестабильность может приводить к некоторым вариантам клеточной подвижности, например к изменению формы клетки. Некоторые компоненты цитоскелета при участии специальных дополнительных белков могут стабилизироваться или образовывать сложные фибриллярные ансамбли и играть только каркасную роль.



В отличие от животных и многих простейших, у растений, бактерий и грибов, почти все клетки имеют стенку , лежащую кнаружи от цитоплазматической мембраны и обладающую повышенной прочностью. Основная функция данной структуры - опора и защита.

Клеточные стенки (или клеточные оболочки) строятся из веществ, синтезируемых самими клетками. Их химический состав различен у растений, грибов и прокариот. Кроме того, даже у одного растения у различных клеток состав стенок несколько различен.

Клеточная стенка растений состоит в основном из целлюлозы. Целлюлоза - это полисахарид, мономером которого является глюкоза.

Основу бактериальных клеточных стенок составляет вещество муреин (относится к пептидогликанам). У грамположительных бактерий в состав оболочки входят различные кислоты, а сама оболочка плотно прилегает к цитоплазматической мембране. У грамотрицательных бактерий оболочка более тонкая и не прилегает к мембране. Между мембраной и оболочкой образуется периплазматическое пространство. Снаружи клеточная оболочка грамотрицательных прокариот окружена внешней мембраной, составленной из липополисахарида.

У грибов основным веществом клеточных стенок является хитин, а не целлюлоза.

Состав клеточной стенки растений

У растений стенка дочерних клеток образуется уже во время деления родительской. Впоследствии она называется первичной. У многих клеток позже образуется вторичная оболочка.

Первичная клеточная оболочка состоит из микрофибрилл целлюлозы , погруженных в матрикс из других полисахаридов. Отличительной особенностью волокон целлюлозы является их прочность. Молекула целлюлозы представляет собой длинную полисахаридную цепь. Отдельные молекулы соединяются друг с другом водородными связями в пучок, который называется микрофибриллой. Такие фибриллы образуют каркас клеточной стенки.

Матрикс клеточной стенки составляют полисахариды пектины и гемицеллюлозы , а также ряд других веществ (например, белков). Пектиновые вещества представляют собой группу кислых полисахаридов, их молекулы могут быть не только линейными, но и разветвленными. Гемицеллюлозы также смешанная группа полисахаридов. Длина их линейных молекул короче, чем у целлюлозы.

Оболочки соседних клеток растений соединены между собой срединной пластинкой, состоящих из пектатов магния и кальция , для которых характерна клейкость.

В состав стенок растений входит вода (составляет более половины массы), обуславливая ряд физических и химических свойств полисахаридов.

Жесткий каркас растения во многих местах пронизан каналами (плазмодесмами ), по которым цитоплазма одной клетки соединяется с цитоплазмой соседних.

Клетки мезофилла листа (а также некоторые другие) на протяжении всей своей жизни имеют только первичную стенку. У большинства же клеток на первичную оболочку с внутренней стороны отлагается вторичная стенка, составленная из дополнительных слоев целлюлозы. Обычно в это время клетка уже дифференцирована и не растет (исключение составляют, например, клетки колленхимы).

В каждом отдельном слое вторичного утолщения микрофибриллы целлюлозы располагаются под одним углом (параллельно друг другу). Однако разные слои имеют разный угол, что обеспечивает большую прочность.

Часть клеток растений одревесневают (трахеальные элементы ксилемы, склеренхима и др.). В основе этого процесса лежит интенсивная лигнификация стенок (в небольших количествах лигнин есть во всех оболочках). Лигнин не является полисахаридом, а представляет собой сложное полимерное вещество. Отложения лигнина могут иметь различную форму (сплошную, кольцевую, спиральную, сетчатую). Он скрепляет целлюлозу, не дает ей смещаться. Лигнин не только обеспечивает прочность, но и дает дополнительную защиту от неблагоприятных физических и химических факторов.

Функции клеточной стенки

Оболочки разных клеток совместно обеспечивают всему растению и его отдельным частям механическую прочность и опору. Это функция клеточной стенки аналогична одной из функций скелета животных. Однако она не единственная.

Жесткость стенок препятствует растяжению клеток и их разрыву. В результате по физическим законам в клетки может путем осмоса поступать вода. Для травянистых растений тургоцентричность клеток является единственной их опорой.

Микрофибриллы целлюлозы ограничивают рост клеток и определяют их форму. Если микрофибриллы окольцовывают клетку, то она будет расти в длину (поперек направления волокон).

Связанные клеточные стенки образуют апопласт , по которому передвигается вода и минеральные вещества. Плазмодесмы связывают содержимое разных клеток в единую систему - симпласт .

Стенки сосудов ксилемы, трахеид, ситовидных трубок выполняют транспортную функцию.

Наружные клеточные стенки эпидермальных клеток покрыты воском (кутикулой). С одной стороны, он препятствует испарению воды, с другой – проникновению вредных микроорганизмов.

У некоторых растений в определенных клетках оболочки видоизменяются и служат местом запаса питательных веществ.

Клеточная стенка растений формируется при участии плазматической мембраны и является экстраклеточным (внеклеточным) многослойным образованием, защищающим поверхность клетки и служащим как бы наружным скелетом растительной клетки (рис. 1). Клеточная стенка растений состоит из двух компонентов: аморфного пластичного гелеобразного матрикса (основы) с высоким содержанием воды и опорной фибриллярной системы. Дополнительные полимерные вещества и соли, часто входящие в состав оболочек, придают им жесткость и делают их несмачиваемыми.

Рис. 1. Схема строения клеточной стенки растений: 0 -- срединная пластинка; 1 -- первичная оболочка (два слоя по обе стороны от 0); 2 -- слои вторичной оболочки; 3 -- третичная оболочка; ПМ -- плазматическая мембрана; В -- вакуоль; Я -- ядро

В химическом отношении главные компоненты оболочек растений относятся к структурным полисахаридам. В состав матрикса оболочек растений входят гетерогенные группы полисахаридов, растворяющиеся в концентрированных щелочах, гемицеллюлозы и пектиновые вещества. Гемицеллюлозы представляют собой ветвящиеся полимерные цепи, состоящие из различных гексоз (глюкоза, манноза, галактоза и др.), пентоз (ксилоза, арабиноза) и уроновых кислот (глюкуроновая и галактуроновая). Эти компоненты гемицеллюлоз сочетаются между собой в разных количественных отношениях и образуют разнообразные комбинации. Цепи гемицеллюлозных молекул не кристаллизуются и не образуют элементарных фибрилл. Из-за наличия полярных групп уроновых кислот они сильно гидратированы.

Пектиновые вещества -- гетерогенная группа, в которую входят разветвленные, сильно гидратированные полимеры, несущие отрицательные заряды из-за множества остатков галактуроновой кислоты. Благодаря свойствам своих компонентов матрикс представляет собой мягкую пластическую массу, укрепленную фибриллами.

Волокнистые компоненты клеточных оболочек растений состоят обычно из целлюлозы -- линейного, неветвящегося полимера глюкозы. Молекулярная масса целлюлозы варьирует от 5·104 до 5·105 , что соответствует 300-3000 остаткам глюкозы. Такие линейные молекулы целлюлозы могут соединяться в пучки или волокна. В клеточной оболочке целлюлоза образует фибриллы, которые состоят из субмикроскопических микрофибрилл толщиной до 25 нм, а они в свою очередь состоят из множества параллельно лежащих цепей молекул целлюлозы.

Количественные соотношения целлюлозы к веществам матрикса (гемицеллюлозы) могут быть весьма различными у разных объектов. Свыше 60% сухой массы первичных оболочек составляет их матрикс и около 30% приходится на скелетное вещество -- целлюлозу. В сырых клеточных оболочках почти вся вода связана с гемицеллюлозами, поэтому масса основного вещества в набухшем состоянии достигает 80% сырой массы всей оболочки, тогда как содержание волокнистых веществ сводится всего к 12%. В волосках хлопчатника целлюлозный компонент составляет 90%; в древесине на долю целлюлозы приходится 50% от компонентов клеточной стенки.

Кроме целлюлозы, гемицеллюлозы и пектинов в состав клеточных оболочек входят дополнительные компоненты, придающие им особые свойства. Так, инкрустация (включение внутрь) оболочек лигнином (полимер кониферилового спирта) приводит к одревеснению клеточных стенок, повышению их прочности (рис. 2). Лигнин замешает в таких оболочках пластические вещества матрикса и играет роль основного вещества, обладающего высокой прочностью. Часто матрикс укреплен минеральными веществами (SiO2, CaCO3 и др.).


Рис. 2. Инкрустация клеточной оболочки: а -- фибриллярный каркас и межфибриллярный матрикс; б -- инкрустированная лигнином и утерявшая способность к растяжению оболочка с остатками матрикса; в -- последующее инкрустирование фенолами и (или) минеральными веществами, приводящее к повышению твердости оболочки

На поверхности клеточной оболочки могут скапливаться различные адкрустирующие вещества, например кутин и суберин, приводящие к опробковению клеток. В клетках эпидермиса на поверхности клеточных оболочек откладывается воск, который образует водонепроницаемый слой, препятствующий потере клеткой воды.

Из-за своего пористого, рыхлого строения клеточная стенка растений проницаема в значительной степени для низкомолекулярных соединений, таких как вода, сахара и ионы. Но макромолекулы проникают через целлюлозные оболочки плохо: величина пор в оболочках, позволяющая свободную диффузию веществ, составляет всего лишь 3--5 нм.

Опыты с мечеными соединениями показали, что при росте клеточной оболочки выделение веществ, из которых она строится, происходит по всей поверхности клетки. Аморфные вещества матрикса, гемицеллюлозы и пектины синтезируются в вакуолях аппарата Гольджи и выделяются через плазмалемму путем экзоцитоза. Фибриллы целлюлозы синтезируются специальными ферментами, встроенными в плазмалемму.

Оболочки дифференцированных, зрелых, клеток обычно многослойные, в слоях фибриллы целлюлозы ориентированы по-разному, и количество их также может значительно колебаться. Обычно описывают первичные, вторичные и третичные клеточные оболочки (см. рис. 1). Для того чтобы разобраться в строении и появлении этих оболочек, необходимо познакомиться с тем, как они образуются после деления клеток.

При делении клеток растений после расхождения хромосом в экваториальной плоскости клеток появляется скопление мелких мембранных пузырьков, которые в центральной части клеток начинают сливаться друг с другом (рис.3). Этот процесс слияния мелких вакуолей происходит от центра клетки к периферии и продолжается до тех пор, пока мембранные пузырьки не сольются между собой и с плазматической мембраной боковой поверхности клетки. Так образуется клеточная пластинка, или фрагмопласт. В центральной части ее располагается аморфное вещество матрикса, которое наполняло сливающиеся пузырьки. Доказано, что эти первичные вакуоли происходят от мембран аппарата Гольджи. В состав первичной клеточной стенки входит также небольшое количество белка (около 10%), богатого гидроксипролином и имеющего множество коротких олигосахаридных цепей, что определяет этот белок как гликопротеид. По периферии клеточной пластинки при наблюдении ее в поляризованном свете обнаруживается заметное двойное лучепреломление, вызванное тем, что в этом месте располагаются ориентированные фибриллы целлюлозы. Таким образом, растущая первичная клеточная стенка состоит уже из трех слоев: центрального -- срединная пластинка, состоящая только из аморфного матрикса, и двух периферических -- первичная оболочка, содержащая гемицеллюлозу и целлюлозные фибриллы. Если срединная пластинка - это продукт активности исходной клетки, то первичная оболочка образуется за счет выделения гемицеллюлозы и фибрилл целлюлозы двумя новыми клеточными телами. И все дальнейшее увеличение толщины клеточной (вернее, межклеточной) стенки будет происходить за счет активности двух дочерних клеток, которые с противоположных сторон выделяют вещества клеточной оболочки, утолщающейся путем подслаивания все новых и новых пластов. Как и с самого начала, выделение веществ матрикса осуществляется за счет подхода к плазматической мембране пузырьков аппарата Гольджи, слияния их с мембраной и высвобождения их содержимого за пределы цитоплазмы. Здесь же, вне клетки, на ее плазматической мембране идет синтез и полимеризация целлюлозных фибрилл. Так постепенно образуется вторичная клеточная оболочка. С достаточной точностью определить и суметь отличить первичную оболочку от вторичной трудно, так как они соединены между собой несколькими промежуточными слоями.

Основную массу закончившей свое формирование клеточной стенки составляет вторичная оболочка. Она придает клетке ее окончательную форму. После разделения клетки на две дочерние происходит рост новых клеток, увеличение их объема и изменение формы; клетки часто вытягиваются в длину. Одновременно с этим идут наращивание толщины клеточной оболочки и перестройка ее внутренней структуры.

При образовании первичной клеточной оболочки в ее составе еще мало целлюлозных фибрилл, и они располагаются более или менее перпендикулярно будущей продольной оси клетки. Позже, в период растяжения (удлинения клетки за счет роста вакуолей в цитоплазме) ориентация этих поперечно-направленных фибрилл подвергается пассивным изменениям: фибриллы начинают размещаться под прямым углом друг к другу и в конечном счете оказываются вытянутыми более или менее параллельно продольной оси клетки. Постоянно идет процесс: в старых слоях (ближе к центру оболочки) фибриллы подвергаются пассивным сдвигам, а отложение новых фибрилл во внутренних слоях (ближайших к мембране клетки) продолжается в соответствии с исходным планом конструкции оболочки. Этот процесс создает возможность скольжения фибрилл относительно друг друга, а перестройка арматуры клеточной оболочки возможна из-за студенистого состояния компонентов ее матрикса. В дальнейшем при замещении в матриксе гемицеллюлозы на лигнин подвижность фибрилл резко снижается, оболочка становится плотной, происходит одревеснение.

Рис. 3. Схема роста клеточной оболочки от её закладки при делении клетки (I) до полного созревания (V): 1 -- первичная оболочка; 2 -- слои вторичной оболочки; 3 -- третичная оболочка; В -- вакуоли; СП -- срединная пластинка; ПМ -- плазматические мембраны двух соседних клеток

Часто под вторичной оболочкой обнаруживают третичную оболочку, которую можно рассматривать как засохший остаток дегенерировавшего слоя собственно цитоплазмы.

Следует отметить, что при делении клеток растений формированию первичной оболочки не во всех случаях предшествует образование клеточной пластинки. Так, у зеленой водоросли спирогиры новые поперечные перегородки возникают путем образования на боковых стенках исходной клетки выступов, которые, постепенно разрастаясь к центру клетки, смыкаются и делят клетку надвое.

Как уже говорилось, если в водной гипотонической среде лишить клетку ее оболочки, то произойдет лизис, разрыв клетки. Оказалось, что, подбирая соответствующие концентрации солей и сахаров, можно уравнять осмотическое давление снаружи и внутри клеток, лишенных своих оболочек. При этом такие протопласты приобретают шаровидную форму (сферопласты). Если в среде, где находятся протопласты, будет достаточное количество питательных веществ и солей (среди них необходим Са2+), то клетки снова восстанавливают, регенерируют свою клеточную оболочку. Более того, они способны в присутствии гормонов (ауксинов) делиться и создавать клеточные колонии, которые могут дать начало для роста целого растения, от которого была взята клетка.

Главный волокнистый компонент клеточной стенки больших групп грибов (базибиомицеты, аскомицеты, зигомицеты) -- хитин; это -- полисахарид, в котором основным сахаридом является N-ацетилглюкозамин. В состав клеточной стенки грибов, кроме хитина, могут входить вещества матрикса, гликопротеиды и различные белки, синтезированные в цитоплазме и выделенные клеткой наружу.