Зависит давление от глубины. Давление воды в глубинах океана

Существуют легенды, что затонувшие в океане корабли не ложатся на дно, а повисают на некоторой глубине, путешествуя вместе с океанскими течениями. Справедливо ли это? Давление воды в глубинах океана действительно достигает огромных величин. На глубине 10 м давит с силой 10Н на 1 см 2 погруженного тела, на глубине 100 м – 0,1 кН, 1 000 м – 1 кН и т. д. На глубине Марианского желоба – 11,5 км – давление воды достигает почти 120 МПа. При таком давлении в глубинах океана куски дерева после извлечения на поверхность оказались настолько спрессованными, что тонули в воде, а крепко закупоренные бутылки были раздавлены давлением воды. Существует мнение, что из огнестрельного оружия, опущенного на такую глубину, нельзя выстрелить.

Можно предположить, что чудовищное давление воды в глубинах океана так уплотнит воду, что корабли и прочие тяжелые предметы зависнут в ней, и не будут тонуть. Но вода, как и все жидкости, мало поддается сжатию. Если сжать воду до такой плотности, чтобы в ней плавало , необходимо было бы уплотнить ее в 8 раз. Между тем для уплотнения только вдвое, то есть сокращения объема наполовину, необходимо давление 1100 МПа. Это соответствует глубине 110 км, что не реально!

В самом глубоком месте океана вода уплотнена на 5%. Это почти не может повлиять на условия плавания в ней различных тел, тем более что твердые предметы, погруженные в такую воду, также подвергаются этому давлению и, следовательно, тоже уплотняются. Поэтому можно сделать вывод о том, что покоятся на дне океана. Не оставляется шанса даже для перевернутых килем вверх кораблей, несмотря на то, что в некоторых помещениях судна воздух окажется плотно запертым. Возможно, что некоторые из них так и не достигают дна, оставаясь висеть в темных глубинах океана? Достаточно было бы легкого толчка, чтобы вывести такое судно из равновесия, перевернуть, наполнить водой и заставить упасть на дно. Но откуда взяться толчкам в глубине океана, где вечно царит тишина и спокойствие и куда не проникают даже отголоски бурь?

Все эти доводы основаны на физической ошибке. Опрокинутый килем вверх корабль вовсе не начнет тонуть, а останется на поверхности воды. Оказаться на полпути между уровнем океана и его дном он никак не может.

В виду того, что подобное явление никогда не наблюдалось и не проверялось с затонувшими кораблями, серьезный ученый должен оставить хоть малейшее сомнение в чем бы то ни было. Тем более что мнение о зависших кораблях разделяют многие моряки. Дело в том, что на кораблях часто имеются герметичные отсеки. И если эти отсеки не повреждены и в них остался воздух, то его давление воды в глубинах океана не сжимает, и он остается прежнего объема. Поэтому корабль, имея общую плотность выше поверхностной плотности воды океанов (почти всегда менее плотной – по причине и более высокой температуры, и меньшей солености), начинает погружаться, и когда достигает холодных (в глубине океанов температура +4 0 С, при этом плотность ее максимальна) и более соленых ее слоев, зависает на неопределенное время...

Оказывается, разбивая сосуд о борт , при его спуске на воду, мы, тем самым, нарекаем его судьбу. Она неотступно ведет его через моря и океаны, где ему суждено побывать. И если случится так, что корабль затонет – это еще не конец. Давление воды в глубинах океана может дать начало новой легенде о блуждающих зависших затонувших кораблях!

Напомним, что давление p определяется соотношением

где F – модуль силы давления, S – площадь поверхности, на которую действует сила давления. Сила давления направлена перпендикулярно поверхности.

Давление является скалярной величиной. Его измеряют в Н паскалях (Па): 1 Па = 1 Н/м 2 . Атмосферное давление равно прим мерно 10 5 Па. Вышележащие слои жидкости давят своим весом на нижележащие слои. Поэтому давление в жидкости с глубиной возрастает. Зависимость давления жидкости от глубины можно вывести, найдя силу давления на дно цилиндрического сосуда.

1. Покажите, что давление жидкости плотностью ρ на глубине h (без учета атмосферного давления) выражается формулой

Подсказка. Найдите силу давления жидкости на дно цилиндрического сосуда и воспользуйтесь формулой (1).

Если на поверхность жидкости оказывается внешнее давление pвнеш (например, давление поршня или давление атмосферы), то давление жидкости на глубине h выражается формулой

p = p внеш + ρgh.

2. На какой глубине давление в озере в 2 раза больше атмосферного? Во многих задачах (например, при нахождении силы Архимеда) имеет значение лишь разность давлений жидкости на различных глубинах, а в этой разности вклад атмосферного давления сокращается. Поэтому в таких случаях атмосферное давление не учитывают, то есть давление на глубине h находят по формуле (2). Мы тоже будем так поступать, не оговаривая этого каждый раз особо.

Если в сосуде находятся несколько несмешивающихся жидкостей с различной плотностью, то создаваемое ими давление равно сумме давлений, создаваемых слоем каждой жидкости.

3. В цилиндрическом сосуде с площадью дна 1 дм 2 находятся вода и керосин (эти жидкости не смешиваются). Общая масса жидкостей 2,8 кг, верхний уровень керосина находится на высоте 30 см от дна. Плотность керосина составляет 0,8 от плотности воды.
а) На какой высоте от дна находится граница раздела жидкостей?
б) Чему равна масса керосина?

4. В U-образной трубке с одинаковыми коленами, площадью поперечного сечения 10 -3 м 2 каждое, находится вода (рис. 37.1). В левое колено наливают 0,1 кг керосина.

А) Изобразите на чертеже положение жидкостей в коленах трубки.
б) Чему равна высота столба керосина?
в) Чему равно давление жидкостей на уровне границы раздела жидкостей?
г) Чему равна высота столба воды в правом колене над уровнем раздела жидкостей?
д) Насколько поднялся уровень воды в правом колене по сравнению с начальным положением?
Подсказка. В правом колене уровень воды поднялся настолько же, насколько он опустился в левом колене (поскольку объем воды не изменился).

2. Закон Архимеда

Рассмотрим силы давления жидкости на погруженный в жидкость куб (рис. 37.2).

Силы давления на боковые грани куба взаимно уравновешиваются. Но силы давления на верхнюю и нижнюю грани не уравновешиваются: поскольку давление жидкости увеличивается с глубиной, на нижнюю грань куба действует большая сила давления, чем на верхнюю.

Следовательно, равнодействующая сил давления, действующих на все участки поверхности куба, направлена вверх. Это – выталкивающая сила, или сила Архимеда, знакомая вам из курса физики основной школы.

5. Чему равна сила Архимеда, действующая на куб с длиной ребра a, погруженный в жидкость плотностью ρ?

Найдем, чему равен модуль силы Архимеда, действующей на тело произвольной формы, куда эта сила направлена и в какой точке приложена. На рисунке 37.3, а красными стрелками схематически изображены силы давления жидкости, действующие на участки тела одинаковой площади. С увеличением глубины эти силы увеличиваются.


Мысленно заменим погруженное в жидкость тело этой же жидкостью. На участки поверхности этого «жидкого» тела будут действовать такие же силы давления, что и на данное тело (рис. 37.3, б). Следовательно, равнодействующая сил давления, действующая на жидкость в объеме данного тела, будет такой же, как и сила Архимеда, действующая на само данное тело.

Заметим теперь, что выделенный объем жидкости находится внутри той же жидкости в равновесии. Следовательно, действующие на него сила тяжести т и сила Архимеда А уравновешивают друг друга, то есть они равны по модулю и направлены противоположно (рис. 37.3, в). Отсюда следует, что
на погруженное в жидкость тело действует направленная вверх сила Архимеда А, равная по модулю весу жидкости в объеме погруженной в жидкость части тела:

F A = ρgV погр. (3)

Приведенный вывод показывает, что сила Архимеда приложена в центре тяжести вытесненного телом объема жидкости (рис. 32.3, в).

Полученное выражение для силы Архимеда и утверждение о точке ее приложения справедливы и тогда, когда тело погружено в жидкость лишь частично.

6. На концах легкого стержня длиной (подвешены алюминиевый и латунный шары равной массы. Система находится в равновесии. Стержень вместе с шарами погружают в воду.
а) Сохранится ли равновесие стержня? И если нет, то какой шар в воде перевесит?
б) В сторону какого шара надо передвинуть точку подвеса стержня, чтобы он в воде находился в равновесии?
в) Обозначим длину стержня l, массы шаров m, плотности воды, алюминия и латуни ρ в, ρ а и ρ л, а объемы шаров V а и V л. Модуль смещения точки подвеса обозначим x. Объясните, почему справедливо уравнение:

г) Насколько надо передвинуть точку подвеса стержня, чтобы он в воде находился в равновесии, если l = 1 м, плотность латуни в 3 раза больше плотности алюминия, а плотность алюминия в 2,7 раза больше плотности воды?

7. Ко дну аквариума прикреплена пружина, к верхнему концу которой прикреплен деревянный шар (рис. 37.4). Чему равна плотность дерева, если энергия упругой деформации пружины не изменилась после того, как в аквариум налили воду? Считайте, что шар полностью погружен в воду.

8. Подвешенная за один конец тонкая пластмассовая палочка массой m и длиной l частично погружена в воду и находится в равновесии в наклонном положении (рис. 37.5). При этом длина погруженной в воду части палочки равна l 1 . Обозначим площадь поперечного сечения палочки S, плотность пластмассы ρ п, плотность воды ρ в.

а) Изобразите на чертеже действующие на палочку силу тяжести и силу Архимеда. Объясните, почему справедливы уравнения:

б) Чему равна плотность пластмассы, если l 1 = 0,5l?

Палочка в стакане с водой

Вернемся к палочке в стакане, рассмотренной в § 36. Но пусть теперь стакан доверху наполнен водой (рис. 37.6). Будем считать, что при этом положение палочки не изменилось.

? 9. Как и почему изменилась сила давления края стакана на палочку после заполнения стакана водой?
Введем обозначения:
l – длина палочки,
S – площадь ее поперечного сечения,
m – масса палочки,
ρ – плотность палочки,
ρ в – плотность воды,
h – высота стакана,
d – его диаметр.

Для упрощения формул удобно обозначить α угол между палочкой и вертикалью, а длину находящейся в стакане части палочки b (α и b можно выразить через h и d, но удобнее ввести для них свои обозначения, чтобы упростить формулы).

Силу, действующую на палочку со стороны края стакана, обозначим к, а силу Архимеда – A .

10. Обозначьте на чертеже в тетради все действующие на палочку силы и объясните, почему справедливы уравнения:

11. В гладком цилиндрическом стакане диаметром 6 см и высотой 8 см находится тонкая палочка длиной 15 см. Плотность палочки в 2 раза больше плотности воды. Во сколько раз уменьшится сила давления палочки на край стакана после того, как его наполнят водой?

3. Плавание тел

Условие плавания тел

Когда тело плавает, действующая на него сила Архимеда A уравновешивает силу тяжести т. Следовательно,

Это справедливо для любого тела и любой жидкости, причем независимо от того, погружено тело в жидкость полностью (рис. 37.7, а) или частично (рис. 37.7, б).

(Точка приложения силы Архимеда может не совпадать с точкой приложения силы тяжести. Но поскольку здесь используется только первое условие равновесия, мы изображаем на чертеже эти силы приложенными в одной точке.)

? 12. В воде и керосине плавают одинаковые деревянные шарики. На какой шарик действует большая сила Архимеда?

Плавание однородных тел

Масса m однородного тела связана с его плотностью ρт и объемом V соотношением

m = ρ т V. (5)

А сила Архимеда равна весу жидкости в объеме погруженной части тела. Обозначим плотность жидкости ρж, а объем погруженной в жидкость части тела V погр. Тогда

F А = ρ ж gV погр. (6)

13. Объясните, почему справедливо соотношение

V погр /V = ρ т /ρ ж. (7)

Подсказка. Воспользуйтесь формулами (4), (5), (6).

14.Вернемся к двум одинаковым деревянным шарикам, первый из которых плавает в воде, а второй – в керосине. Масса каждого шарика 100 г.
а) Для какого шарика объем погруженной части больше?
б) Насколько объем погруженной части одного шарика больше, чем другого?

Пусть теперь тело плавает на границе двух жидкостей (рис. 37.8). Как найти объем погруженной в каждую жидкость части тела?

Рассуждая как и при выводе выражения (3) для силы Архимеда, заменим части тела, находящиеся в разных жидкостях, двумя «телами» того же объема и формы, состоящими из соответствующих жидкостей. (При этом надо считать погруженной в верхнюю жидкость часть тела, находящуюся выше границы раздела жидкостей (пунктир на рисунке 37.10), а в нижнюю – ниже этой границы.)

Эти тела будут находиться в равновесии в «своих» жидкостях. Следовательно, равнодействующая сил давления, приложенных ко всем частям поверхности тела, направлена вверх и равна по модулю суммарному весу жидкостей в объеме, вытесненном телом.

15. Когда брусок плавает на границе двух жидкостей, К. верхняя (более легкая) жидкость давит на него вниз (рис. 37.9)! Почему же при нахождении действующей на брусок выталкивающей силы нужно считать, что сила Архимеда, действующая на него со стороны более легкой жидкости, направлена вверх?

16. Тело объемом V и плотностью ρт плавает на границе двух жидкостей, плотности которых ρ 1 и ρ 2 . Обозначим объемы частей тела, погруженных в каждую жидкость, V 1 и V 2 . Объясните, почему справедливо следующее уравнение:

ρ 1 V 1 + ρ 2 V 2 = ρтV.

17. Пластмассовый брусок высотой 10 см плавает на границе воды и керосина, причем брусок погружен в воду на 4 см. Чему равна плотность бруска?

Плавание неоднородных тел

Если тело неоднородно (например, изготовлено из различных материалов или имеет полость), то объем погруженной в жидкость части тела также можно найти, используя формулу (4). Напомним: она утверждает, что действующая на плавающее тело сила Архимеда уравновешивает силу тяжести.

18. Полый медный шар плавает на поверхности воды. Радиус шара 10 см, а толщина стенок – 1 мм. Какая часть объема шара погружена в воду?
Подсказка. Объем шара радиусом r и площадь его поверхности выражаются формулами V = (4πr 3)/3, S = 4πr 2 . Если толщина стенок шара d намного меньше его радиуса, объем его стенок (оболочки) с хорошей степенью точности выражается формулой V об = Sd, где S – площадь поверхности шара.

19. На поверхности воды плавает плоская льдина площадью 5 м 2 и толщиной 10 см. Плотность льда составляет 0,9 от плотности воды.
а) Груз какой наименьшей массы надо поставить на льдину, чтобы она полностью погрузилась в воду?
б) Какую минимальную работу надо совершить, чтобы полностью погрузить льдину в воду?

Подсказка. В данном случае при нахождении работы по подъему или погружению тела можно брать среднее арифметическое значений силы Архимеда, действующей на тело в начальном и конечном состояниях.

Теряет ли в весе погруженное в воду тело?

Поставим опыт
Взвесим цилиндр из легкого металлического сплава и стакан, наполовину наполненный водой (рис. 37.10, а), А затем погрузим подвешенный к динамометру цилиндр в стакан с водой (рис. 37.10, б).


Мы увидим, что показания динамометра уменьшились. Это легко объяснить: на погруженный в воду цилиндр действует сила Архимеда.
Означает ли это, что вес погруженного в жидкость тела уменьшается на величину, равную выталкивающей силе?

Нет, не означает! Вспомним, что вес – это сила, с которой тело растягивает подвес или давит на опору. При погружении цилиндра в воду его вес не уменьшился, а перераспределился: на подвес (динамометр) приходится теперь только часть веса цилиндра, а оставшаяся часть веса приходится на опору (воду). В этом легко убедиться: при погружении цилиндра в воду показания весов, на которых стоит стакан с водой, увеличились настолько же, насколько уменьшились показания динамометра, к которому подвешен цилиндр.

Когда человек лежит на воде (рис. 37.11), действующая на него сила Архимеда уравновешивает силу тяжести. Но этот человек не находится в невесомости: вода служит ему очень мягкой, но все-таки опорой, Вес человека приложен к воде и равен силе тяжести (как для любого покоящегося тела).

? 20. Находится ли в состоянии невесомости рыба в воде?

Дополнительные вопросы и задания

21. Когда подвешенное к динамометру тело погружено в воду, показания динамометра равны P в, а когда это же тело погружено в керосин, показания динамометра равны P к. Чему будут равны показания P динамометра, если тело будет находиться в воздухе? Считайте, что плотность тела больше плотности воды, а плотность керосина составляет 0,8 от плотности воды.

22. В сосуде с водой плавает куб плотностью 900 кг/м 3 . Длина ребра куба 10 см. Поверх воды наливают слой керосина так, что верхний уровень керосина оказывается вровень с верхней гранью куба.
а) Какова толщина слоя керосина?
б) Насколько изменилась глубина погружения куба в воду?

23. На концах легкого стержня длиной 1 м уравновешены алюминиевый и латунный шары равного объема. Стержень вместе с шарами погружают в воду. Сохранится ли равновесие стержня? И если нет, то какой шар в воде перевесит?

24. К деревянному шару массой 20 кг и плотностью 400 кг/м 3 прикреплена длинная стальная цепь. Масса 1 м цепи равна 1 кг. Плотность стали примите равной 8 * 10 3 кг/м 3 . Шар с цепью опускают в озеро так, что часть цепи лежит на дне. На какой высоте от дна будет находиться в равновесии шар, если он полностью погружен в воду? Считайте, что радиусом шара по сравнению с глубиной погружения можно пренебречь.

25. В высоком гладком цилиндрическом стакане диаметром 6 см находится тонкая палочка длиной 10 см и массой 100 г (рис. 37.12). Плотность палочки в 2 раза больше плотности воды. С какой силой давит верхний конец палочки на стенку стакана, когда в стакан налита вода до середины палочки?

Подсказка. Искомая сила направлена горизонтально. Примените второе условие равновесия относительно нижнего конца палочки.

В § 147было указано, что давление водяного столба высоты 10 метров равно одной атмосфере. Плотность морской соленой воды на 1-2% больше, чем плотность пресной воды. Поэтому можно с достаточной точностью считать, что погружение в море на каждые 10 метров дает увеличение гидростатического давления на одну атмосферу. Например, подводная лодка, погрузившаяся на 100 м под воду, испытывает давление, равное 10 атм (сверх атмосферного), что примерно соответствует давлению внутри парового котла паровоза. Таким образом, каждой глубине под поверхностью воды соответствует определенное гидростатическое давление. Подводные лодки снабжают манометрами, измеряющими давление забортной воды; это позволяет определять глубину погружения.

На очень больших глубинах уже начинает быть заметной сжимаемость воды: вследствие сжатия плотность воды в глубоких слоях больше, чем на поверхности, и поэтому давление растет с глубиной несколько быстрее, чем по линейному закону, и график давления несколько отклоняется от прямой линии. Добавка давления, обусловленная сжатием воды, нарастает пропорционально квадрату глубины. На наибольшей глубине океана, равной 11 км, она достигает почти 3% от полного давления на этой глубине.

Для исследования очень больших глубин применяют батисферы и батискафы. Батисфера - это стальной полый шар, способный выдержать огромное давление воды в морских глубинах. В стенке батисферы устраиваются иллюминаторы - отверстия, герметически закрытые прочными стеклами. Прожектор освещает слои воды, куда уже не может проникнуть солнечный свет. Батисферу, в которой помещается исследователь, опускают с корабля на стальном тросе. Таким образом удавалось достигнуть глубин около 1 км. Батискафы, состоящие из батисферы, которая укреплена внизу большой стальной цистерны, заполненной бензином (рис. 254), опускаются на еще большие глубины.

Рис. 254. Батискаф

Так как бензин легче воды, то такой батискаф, может плавать в глубине моря подобно дирижаблю в воздухе. Роль легкого газа играет здесь бензин. Батискаф снабжается запасом балласта и двигателями, при помощи которых он, в отличие от батисферы, может самостоятельно передвигаться, не будучи связан с кораблем на поверхности воды.

Вначале батискаф плавает на поверхности воды, подобно всплывшей подводной лодке. Для погружения в пустые балластные отсеки впускается забортная вода, и батискаф уходит под воду, опускаясь все глубже и глубже, до самого дна. Для всплытия сбрасывают балласт и облегченный батискаф всплывает снова на поверхность. Наиболее глубокое погружение было совершено 23 января 1960 г., когда батискаф пролежал 20 минут на дне Марианской впадины в Тихом океане, на глубине 10919 м под поверхностью воды, где давление воды (рассчитанное с учетом повышения плотности воды вследствие солености и вследствие сжатия) составляло свыше 1150 атм. Исследователями, опускавшимися в батискафе, были обнаружены живые существа даже на этой наибольшей глубине мирового океана.

Пловец или аквалангист, нырнувший под воду, испытывает на всей поверхности своего тела гидростатическое давление окружающей воды сверх действующего постоянно атмосферного давления. Хотя тело водолаза (рис. 255), работающего в резиновом костюме (скафандре), не соприкасается с водой непосредственно, оно испытывает такое же давление, как и тело пловца, так как воздух в скафандре должен быть сжат до давления окружающей воды. По этой же причине и воздух, подаваемый по шлангу водолазу для дыхания, должен накачиваться под давлением, равным давлению воды на глубине погружения водолаза. Такое же давление должно быть у воздуха, поступающего из баллонов со сжатым воздухом в маску аквалангиста. Под водой приходится дышать воздухом повышенного давления.

Рис. 255. Водолаз в резиновом костюме с металлическим шлемом. Воздух водолазу подается по трубке

Рис. 256. Водолазный колокол

Не спасает подводника от повышенного давления и водолазный колокол (рис. 256), или кессон, так как и в них воздух должен быть сжат настолько, чтобы не допустить воду в колокол, т. е. до давления окружающей воды. Поэтому при постепенном погружении колокола в него все время подкачивают воздух с тем расчетом, чтобы давление воздуха было равно давлению воды на данной глубине. Повышенное давление вредно отражается на здоровье человека, и это ставит предел глубине, на которой возможна безопасная работа водолаза. Обычная глубина погружения водолаза в резиновом скафандре не превосходит 40 м: на этой глубине давление увеличено на 4 атм. Работа водолаза на большей глубине возможна только в жестком («панцирном») скафандре, принимающем на себя давление воды. В таком скафандре можно безопасно находиться на глубине до 200 м. Воздух в такой скафандр подается при атмосферном давлении.

При длительном пребывании под водой при давлении, значительно превышающем атмосферное, большое количество воздуха оказывается растворенным в крови и других жидкостях организма водолаза. Если водолаз быстро поднимается на поверхность, то воздух, растворенный под большим давлением, начинает выделяться из крови в виде пузырьков (так же, как выделяется в виде пузырьков воздух, растворенный в лимонаде, находящемся в закупоренной бутылке под повышенным давлением, при вытаскивании пробки). Выделяющиеся пузырьки причиняют резкую боль во всем теле и могут вызвать тяжелое заболевание («кессонная болезнь»). Поэтому водолаза, долго пробывшего на большой глубине, следует поднимать на поверхность медленно (часами!), чтобы растворенные газы успевали выделяться постепенно, не образуя пузырьков.


Готовые работы

ДИПЛОМНЫЕ РАБОТЫ

Многое уже позади и теперь ты - выпускник, если, конечно, вовремя напишешь дипломную работу. Но жизнь - такая штука, что только сейчас тебе становится понятно, что, перестав быть студентом, ты потеряешь все студенческие радости, многие из которых, ты так и не попробовал, всё откладывая и откладывая на потом. И теперь, вместо того, чтобы навёрстывать упущенное, ты корпишь над дипломной работой? Есть отличный выход: скачать нужную тебе дипломную работу с нашего сайта - и у тебя мигом появится масса свободного времени!
Дипломные работы успешно защищены в ведущих Университетах РК.
Стоимость работы от 20 000 тенге

КУРСОВЫЕ РАБОТЫ

Курсовой проект - это первая серьезная практическая работа. Именно с написания курсовой начинается подготовка к разработке дипломных проектов. Если студент научиться правильно излагать содержание темы в курсовом проекте и грамотно его оформлять, то в последующем у него не возникнет проблем ни с написанием отчетов, ни с составлением дипломных работ, ни с выполнением других практических заданий. Чтобы оказать помощь студентам в написании этого типа студенческой работы и разъяснить возникающие по ходу ее составления вопросы, собственно говоря, и был создан данный информационный раздел.
Стоимость работы от 2 500 тенге

МАГИСТЕРСКИЕ ДИССЕРТАЦИИ

В настоящее время в высших учебных заведениях Казахстана и стран СНГ очень распространена ступень высшего профессионального образования, которая следует после бакалавриата - магистратура. В магистратуре обучаются с целью получения диплома магистра, признаваемого в большинстве стран мира больше, чем диплом бакалавра, а также признаётся зарубежными работодателями. Итогом обучения в магистратуре является защита магистерской диссертации.
Мы предоставим Вам актуальный аналитический и текстовый материал, в стоимость включены 2 научные статьи и автореферат.
Стоимость работы от 35 000 тенге

ОТЧЕТЫ ПО ПРАКТИКЕ

После прохождения любого типа студенческой практики (учебной, производственной, преддипломной) требуется составить отчёт. Этот документ будет подтверждением практической работы студента и основой формирования оценки за практику. Обычно, чтобы составить отчёт по практике, требуется собрать и проанализировать информацию о предприятии, рассмотреть структуру и распорядок работы организации, в которой проходится практика, составить календарный план и описать свою практическую деятельность.
Мы поможет написать отчёт о прохождении практики с учетом специфики деятельности конкретного предприятия.

Пребывание человека под водой в непривычной для него среде имеет существенные особенности. Погружаясь в воду, человек кроме атмосферного давления воздуха, которое действует на поверхность воды, дополнительно испытывает гидростатическое (избыточное) давление. Общее (абсолютное) давление, измеряемое от нуля - полного вакуума, которое фактически испытывает человек под водой:


или приближенно для пресной воды


Pa - где абсолютное давление воды, кгс/см² ;

Pв - атмосферное давление воздуха, кгс/см²;

Ри - избыточное давление воды, кгс/см²;

Б - барометрическое давление воздуха, мм рт. ст.;

Y - удельный вес воды, кгс/м³;

H - глубина погружения, м.

Пример 1.1. Определить абсолютное давление воды, действующее на пловца-подводника на глубине 40 м:

1) в море, если атмосферное (барометрическое) давление 760 мм рт. ст. и удельный вес морской воды 1025 кгс/м³;

2) в горном озере, если атмосферное давление 600 мм рт. ст. и удельный вес пресной воды 1000 кгс/м³;

3) в равнинном водоеме с пресной водой, если атмосферное давление 750 мм рт. ст.

Решение.

Абсолютное давление воды: 1) в море по (1.1)


2) в горном озере по (1.1)
3) в равнинном водоеме по (1.1)
или по (1.2)
Результаты примера показывают, что с достаточной для практики точностью в большинстве случаев для расчетов можно использовать приближенную формулу (1.2).

Абсолютное давление воды на человека значительно увеличивается с глубиной погружения. Так, на глубине 10 м по сравнению с атмосферным давлением оно удваивается и равно 2 кгс/см² (200 кПа), на глубине 20 м - утраивается и т. д. Однако относительный прирост давления с увеличением глубины уменьшается.

Как видно из табл. 1.1, наибольший относительный прирост давления приходится на зону первых десяти метров погружения. В этой критической зоне наблюдаются значительные физиологические перегрузки, о которых не следует забывать, особенно начинающим пловцам-подводникам (см. 10.2).

Кровообращение под водой в силу неравномерного гидростатического давления на различные участки тела имеет свои особенности. Например, при вертикальном положении человека среднего роста (170 см) в воде независимо от глубины погружения его стопы будут испытывать гидростатическое давление на 0,17 кгс/см² (17 кПа) больше, чем голова.

Таблица 1.1. Изменение давления воды в зависимости от глубины погружения


К верхним областям тела, где давление меньше, кровь приливает (полнокровие), от нижних областей тела, где давление больше, отливает (частичное обескровливание). Такое перераспределение тока крови несколько увеличивает нагрузку на сердце, которому приходится преодолевать большее сопротивление движению крови по сосудам.

При горизонтальном положении тела в воде разность гидростатического давления на грудь и спину невелика - всего 0,02...0,03 кгс/см² (2...3 кПа) и нагрузка на сердце возрастает незначительно.

Дыхание под водой возможно, если внешнее давление воды равно внутреннему давлению воздуха в системе «легкие - дыхательный аппарат» (рис. 1.1). Несоблюдение этого равенства затрудняет дыхание или делает его вообще невозможным. Так, дыхание через трубку на глубине 1 м при разности между внешним и внутренним давлением 0,1 кгс/см² (10 кПа) требует большого напряжения дыхательных мышц и долго продолжаться не может, а на глубине 2 м дыхательные мышцы уже не в состоянии преодолеть давление воды на грудную клетку .

Человек в покое на поверхности делает 12...24 дыхания в минуту, и его легочная вентиляция (минутный объем дыхания) составляет 6... 12 л/мин.


Рис. 1.1. График необходимого давления воздуха в системе «легкие - дыхательный аппарат» в зависимости от глубины погружения: 1 - избыточное (по манометру) давление воздуха; 2 - абсолютное давление воздуха


В нормальных условиях при каждом вдохе-выдохе в легких обменивается не более 1/6 всего находящегося в них воздуха. Остальной воздух остается в альвеолах легких и является той средой, где происходит газообмен с кровью. Альвеолярный воздух имеет постоянный состав и в отличие от атмосферного содержит 14% кислорода, 5,6% углекислого газа и 6,2% водяных паров (см. 1.2).

Даже незначительные изменения в его составе приводят к физиологическим сдвигам, которые являются компенсаторной защитой организма. При значительных изменениях компенсаторная защита не будет справляться, в результате возникнут болезненные (патологические) состояния (см. 10.5...10.8).

Не весь воздух, попадающий в организм, достигает легочных альвеол, где происходит газообмен между кровью и легкими. Часть воздуха заполняет дыхательные пути организма (трахеи, бронхи) и не участвует в процессе газообмена. При выдохе этот воздух удаляется, не достигнув альвеол. При вдохе в альвеолы вначале поступает воздух, который остался в дыхательных путях после выдоха (обедненный кислородом, с повышенным содержанием углекислого газа и водяных паров), а затем свежий воздух.

Объем дыхательных путей организма, в которых воздух увлажняется и согревается, но не участвует в газообмене, составляет примерно 175 см³. При плавании с дыхательным аппаратом (дыхательной трубкой) общий объем дыхательных путей (организма и аппарата) увеличивается почти в два раза. При этом вентиляция альвеол ухудшается и снижается работоспособность.

Интенсивные мышечные движения под водой требуют большого расхода кислорода, что приводит к усилению легочной вентиляции, в результате увеличивается скорость потока воздуха в дыхательных путях организма и аппарата (дыхательной трубки). При этом пропорционально квадрату скорости потока воздуха возрастает сопротивление дыханию. С увеличением плотности сжатого воздуха соответственно глубине погружения сопротивление дыханию также возрастает.

Сопротивление дыханию оказывает существенное влияние на длительность и скорость плавания под водой.

Если сопротивление дыханию достигает 60...65 мм рт. ст. (8...9 кПа), дышать становится трудно и дыхательные мышцы быстро утомляются. Растягивая по времени фазу вдоха и выдоха, можно уменьшить скорость потока воздуха в дыхательных путях. Это приводит к некоторому снижению легочной вентиляции, но в то же время заметно уменьшает сопротивление дыханию.

Плавучесть. Вследствие большой плотности воды человек, погружаясь в нее, находится в условиях, близких к состоянию невесомости. При выдохе средний удельный вес человека находится в пределах 1020... 1060 кгс/м³ (10,2... 10,6 кН/м³) и наблюдается отрицательная плавучесть 1...2 кгс (10...20 Н) - разность между весом вытесненной телом воды и его весом. При вдохе средний удельный вес человека понижается до 970 кгс/м³ (9,7 кН/м³) и появляется незначительная положительная плавучесть.

При плавании в гидрозащитной одежде за счет воздуха в ее складках положительная плавучесть увеличивается, что затрудняет погружение в воду. Плавучесть можно отрегулировать с помощью грузов. Для плавания под водой обычно создают незначительную отрицательную плавучесть - 0,5... 1 кгс (5... 10 Н). Большая отрицательная плавучесть требует постоянных активных движений для удержания на нужной глубине и обычно создается только при работах с опорой на грунт (объект).

Ориентирование под водой представляет определенные трудности. На поверхности человек ориентируется в окружающей среде с помощью зрения, а равновесие тела его поддерживается с помощью вестибулярного аппарата, мышечно-суставного чувства и ощущений, возникающих во внутренних органах и коже при изменении положения тела. Он все время испытывает действие силы тяжести (чувство опоры) и воспринимает малейшее изменение положения тела в пространстве.

При плавании под водой человек лишен привычной опоры. В этих условиях из органов чувств, ориентирующих человека в пространстве, остается вестибулярный аппарат, на отолиты которого продолжают действовать силы земного тяготения. Особенно затруднено ориентирование под водой человека с нулевой плавучестью. Под водой пловец с закрытыми глазами допускает ошибки в определении положения тела в пространстве на угол 10...25°.

Большое значение для ориентирования под водой имеет положение человека. Наиболее неблагоприятным считается положение на спине с запрокинутой назад головой.

При попадании в слуховой проход холодной воды вследствие раздражения вестибулярного аппарата у пловца появляется головокружение, затрудняется определение направления и ошибка часто достигает 180°.

Для ориентирования под водой пловец вынужден использовать внешние факторы, сигнализирующие о положении тела в пространстве: движение пузырьков выдыхаемого воздуха из аппарата, буйки и т. п. Большое значение для ориентирования под водой имеет тренировка пловца.

Сопротивление воды оказывает заметное влияние на скорость плавания. При плавании на поверхности со скоростью 0,8... 1,7 м/с сопротивление движению тела возрастает соответственно с 2,5 до 11,5 кгс (с 25 до 115 Н). При плавании под водой сопротивление движению меньше, так как пловец-подводник занимает более горизонтальное положение и ему не надо периодически поднимать голову из воды, чтобы сделать вдох. Кроме того, под водой меньше тормозящая сила волн и завихрений, возникающих в результате движений пловца. Опыт в бассейне показывает, что один и тот же человек, проплывающий дистанцию 50 м брассом за 37,1 с, под водой проплывает то же расстояние за 32,2 с.

Средняя скорость плавания под водой в гидроодежде с аппаратом 0,3...0,5 м/с. На коротких дистанциях хорошо подготовленные пловцы могут развивать скорость 0,7.., 1 м/с, отлично подготовленные - до 1,5 м/с.

Охлаждение организма в воде протекает интенсивнее, чем на воздухе. Теплопроводность воды в 25 раз, а теплоемкость в 4 раза больше, чем воздуха. Если на воздухе при 4° С человек может без опасности для своего здоровья находиться в течение 6 ч и при этом температуря тела у него не понижается, то в воде при такой же температуре незакаленный человек без защитной одежды в большинстве случаев погибает от переохлаждения уже спустя 30...60 мин. Охлаждение организма усиливается с понижением температуры воды и при наличии течения.

В воздушной среде интенсивные теплопотери при температуре воздуха 15...20° С происходят в результате излучения (40...45%) и испарения (20...25%), а на долю теплоотдачи с помощью проведения приходится лишь 30...35%.

В воде у человека без защитной одежды тепло в основном теряется в результате проведения. На воздухе теплопотери происходят с площади, составляющей около 75% поверхности тела, так как между соприкасающимися поверхностями ног, рук и соответствующими областями туловища существует теплообмен. В воде же теплопотери происходят со всей поверхности тела.

Воздух, непосредственно соприкасающийся с кожей, быстро нагревается и фактически имеет более высокую температуру, чем окружающий. Даже ветер не может полностью удалить с кожи этот слой теплого воздуха. В воде с ее большой удельной теплоемкостью и большой теплопроводностью слой, прилегающий к телу, не успевает нагреваться и легко вытесняется холодной водой. Поэтому температура поверхности тела в воде понижается интенсивнее, чем на воздухе. Кроме того, вследствие неравномерного гидростатического давления воды нижние области тела, которые испытывают большее давление, охлаждаются больше и имеют температуру кожи ниже, чем верхние, менее обжатые водой.

Тепловые ощущения организма на воздухе и в воде при одной и той же температуре различны. В табл. 1.2 дана сравнительная характеристика ощущений человека при одинаковой температуре воды и воздуха.

Таблица 1.2. Тепловые ощущения организма на воздухе и в воде


Вследствие интенсивного охлаждения и обжатия гидростатическим давлением кожная чувствительность в воде понижается, болевые ощущения притупляются, поэтому могут остаться незамеченными небольшие порезы и даже раны.

При спусках под воду в гидрозащитной одежде температура кожи понижается неравномерно. Наибольшее падение температуры кожи отмечается в конечностях (табл. 1.3).

Слышимость в воде ухудшается, так как звуки под водой воспринимаются преимущественно путем костной проводимости, которая на 40% ниже воздушной.

Дальность слышимости при костной проводимости зависит от тональности звука: чем выше тон, тем лучше слышен звук. Это имеет практическое значение для связи пловцов между собой и с поверхностью.

При погружении в снаряжении с объемным шлемом воздушная проводимость сохраняется почти полностью.

Таблица 1.3. Средняя температура кожных покровов пловца-подводника после пребывания в холодной воде (1...9°С) в гидрозащитной одежде в течение 2 ч


Звук в воде распространяется в 4,5 раза быстрее, чем в атмосфере, поэтому под водой сигнал от источника звука, расположенного сбоку, поступает в оба уха почти одновременно, разница составляет менее 0,00-001 с. Столь незначительная разница во времени поступления сигнала недостаточно хорошо дифференцируется, и четкого пространственного восприятия звука не происходит. Следовательно, установить направление на источник звука под водой человеку трудно.

Видимость в воде зависит от количества и состава растворенных в ней веществ, взвешенных частиц, которые рассеивают световые лучи. В мутной воде даже при ясной солнечной погоде видимость почти отсутствует.

Глубина проникновения света в толщу воды зависит от угла падения лучей и состояния водной поверхности. Косые солнечные лучи, падающие на поверхность воды, проникают на малую глубину, и большая часть их отражается от поверхности воды. Слабая рябь или волна резко ухудшают видимость в воде.

На глубине 10 м освещенность в 4 раза меньше, чем на поверхности. На глубине 20 м освещенность уменьшается в 8 раз, а на глубине 50 м - в несколько десятков раз. Лучи с различной длиной волны поглощаются неравномерно. Длинноволновая часть видимого спектра (красные лучи) почти полностью поглощается поверхностными слоями воды. Коротковолновая часть (фиолетовые лучи) в наиболее прозрачной океанской воде может проникать на глубину не более 1000... 1500 м. Зеленые лучи не проникают глубже 100 м.

Зрение под водой имеет свои особенности. Вода обладает примерно такой же преломляющей способностью, как и оптическая система глаза. Если пловец погружается без маски, лучи света проходят через воду и попадают в глаз, почти не преломляясь. При этом лучи сходятся не у сетчатой оболочки, а значительно дальше, за ней. В результате острота зрения ухудшается в 100...200 раз, а поле зрения уменьшается, изображение предметов получается неясным, расплывчатым, и человек становится как бы дальнозорким.

При погружении пловца-подводника в маске световой луч из воды преходит слой воздуха в маске, попадает в глаз и преломляется в его оптической системе как обычно. Но пловец-подводник при этом видит изображение предмета несколько ближе и выше его действительного местоположения. Сами же предметы кажутся под водой значительно больше, чем в действительности. Опытные пловцы приспосабливаются к этим особенностям зрения и не испытывают затруднений.

Резко ухудшается в воде и цветоощущение. Особенно плохо воспринимаются синий и зеленый цвета, которые близки к естественной окраске воды, лучше всего - белый и оранжевый.

Вперед
Оглавление
Назад